Research of Nonlinear Constrained Optimization Problems with Chaos Particle Swarm Optimization
نویسندگان
چکیده
منابع مشابه
Solving Constrained Nonlinear Optimization Problems with Particle Swarm Optimization
This paper presents a Particle Swarm Optimization (PSO) algorithm for constrained nonlinear optimization problems. In PSO, the potential solutions, called particles, are "flown" through the problem space by learning from the current optimal particle and its own memory. In this paper, preserving feasibility strategy is employed to deal with constraints. PSO is started with a group of feasible so...
متن کاملA Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems
Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...
متن کاملOpposition-Based Barebones Particle Swarm for Constrained Nonlinear Optimization Problems
This paper presents a modified barebones particle swarm optimization OBPSO to solve constrained nonlinear optimization problems. The proposed approach OBPSO combines barebones particle swarm optimization BPSO and opposition-based learning OBL to improve the quality of solutions. A novel boundary search strategy is used to approach the boundary between the feasible and infeasible search region. ...
متن کاملUnified Particle Swarm Optimization for Solving Constrained Engineering Optimization Problems
We investigate the performance of the recently proposed Unified Particle Swarm Optimization method on constrained engineering optimization problems. For this purpose, a penalty function approach is employed and the algorithm is modified to preserve feasibility of the encountered solutions. The algorithm is illustrated on four well–known engineering problems with promising results. Comparisons w...
متن کاملDynamic-objective particle swarm optimization for constrained optimization problems
This paper firstly presents a novel constraint-handling technique , called dynamicobjective method (DOM), based on the search mechanism of the particles of particle swarm optimization (PSO). DOM converts the constrained optimization problem into a bi-objective optimization problem, and then enables each particle to dynamically adjust its objectives according to its current position in the searc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy Procedia
سال: 2011
ISSN: 1876-6102
DOI: 10.1016/j.egypro.2011.12.194